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Abstract. The classification of river catchments into groups with similar characteristics addresses the challenges posed by

each location’s unique properties to better understand and predict hydrological behaviors. The recent increasing availability of

remote sensing and other large-scale geospatial datasets have enabled the use of advanced data-driven approaches to classify

catchments using traits such as topography, geology, climate, land cover, land use, and human influence. Unsupervised cluster-

ing algorithms based on the Euclidean distance are commonly used for trait-based classification, but are subject to degradation5

when applied to high dimensional data. In this study we present a new network-based method for multi-scale catchment clas-

sification, which can be applied to large datasets and used to determine the traits associated with different catchment groups.

In this framework two networks are analyzed in parallel; the first where the nodes are traits, and the second where the nodes

are catchments. In both cases edges represent pairwise similarity and a network cluster detection algorithm is used for the clas-

sification. The traits network is used to investigate redundancy in the trait data and to condense this information into a small10

number of interpretable categories. The catchments network is used to classify the catchments into clusters, and to identify

representative catchments for the different groups using the degree centrality metric. We apply this method to classify 9067

river catchments across the contiguous United States at both regional and continental scales using 274 non-categorical traits.

At the continental scale we identify 25 interpretable categories of traits (e.g., developed areas, temperature, croplands) and 34

catchment clusters of size greater than 50. We find that catchments with similar trait categories are geographically coherent,15

with different spatial patterns emerging among the clusters that are dominated by natural and anthropogenic traits. We also

find that the catchment clusters exhibit distinct hydrological behavior based on an analysis of streamflow indices. This network

approach provides several advantages over traditional means of classification including the use of alternate similarity metrics

that are more suitable for high dimensional data and providing interpretability with trait categories that reduce redundancies in

the trait information. The paired catchment-trait networks enables analysis of hydrological behavior using the dominant trait20

categories for each catchment cluster. The approach can be used at multiple spatial scales, since the network topologies adjust

automatically to reflect the trait patterns at the scale of investigation. Finally, the representative catchments identified as hub

nodes in the network can be used to guide transferable observational and modeling strategies. The method is broadly applicable

beyond hydrology for classification of other complex systems that utilize different types of trait datasets.
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1 Introduction25

Catchments are complex environmental systems that consist of diverse natural and anthropogenic components interacting non-

linearly in space and time. A fundamental challenge in hydrology is to understand how these interacting components influence

critical catchment functions such as stream flow and solute exports (Troch et al., 2015). This is difficult to determine even for

catchments with little to no human influence because of the spatial heterogeneity of processes across regions with different

characteristics leading to the problem of "uniqueness of place" (Beven, 2000). For the majority of catchments this challenge is30

compounded due to anthropogenic activities that cause more complex behavior that are not easily modeled (Sivakumar et al.,

2015; Sivapalan, 2006).

The classification of river catchments into groups with similar characteristics has been called out as a practical approach to

address the diversity of hydrologic behavior (McDonnell and Woods, 2004; McDonnell et al., 2007; Wagener et al., 2007). A

classification system would establish the baseline for similarities and differences among catchments, and would be extremely35

beneficial for both modeling and experimental analysis (Dooge, 1986). Several regionalization approaches that attempt to

transfer knowledge (observations, theory, or model predictions) from well observed sites to other less-observed regions, such

as those used for predictions in ungaged basins (PUBs), rely on the concept of similarity for extrapolation (Guo et al., 2021;

Merz and Blöschl, 2004). The ultimate goal of a classification process is to discover the laws governing the behavior of a

system under investigation. By looking at the collective behavior of a group of similar elements, the unique contributions from40

individual elements average out, revealing the fundamental characteristics that regulate catchment functions (Sokal, 1974).

There is a long history of using physical characteristics and other properties (i.e., their traits) to classify catchments in

hydrology, as described in (Wagener et al., 2007). The simplest approach uses dimensionless numbers or indices such as stream

order (Horton, 1945; Strahler, 1952) and Peclet numbers (Redner, 2001) as organizing constructs. More complex approaches

use distribution functions (e.g. hypsometric curve (Langbein et al., 1947)), and conceptual or mathematical models. A common45

approach is to group catchments by hydroclimactic region such as the Koppen classification (Koppen, 1918) or the Budyko

framework (Budyko, 1974). Many studies use the dynamic behavior of a catchment as quantified by the signatures of a function

of interest as the basis for classification instead of traits (see references in (McMillan, 2020), and find the results to be consistent

with knowledge about watershed processes (McMillan et al., 2022). However, signature-based classification cannot be used for

unmonitored sites, which is a significant issue given the paucity of stream flows and other hydrological measurements.50

There has been a dramatic increase in the amount of regional to global scale geospatial datasets produced over the past

two decades, which has enabled a new era of data-driven hydrology (Hubbard et al., 2020). A few data products such as

the Geospatial Attributes of Gages for Evaluating Streamflow, version II (GAGES-II; (Falcone, 2011), StreamCat (Hill et al.,

2016), Caravan (Kratzert et al., 2023) and Hysets (Arsenault et al., 2020) now provide extensive information on hundreds of

catchment traits such as land surface structure, climate conditions, vegetation, land use and other human influences across55

thousands of catchments. Thus new methods for classification that go beyond simplistic trait representations to account for a

diverse array of natural and anthropogenic catchment properties are now possible, and would be extremely useful to understand

or predict complex system behavior. A classification approach would use the trait features as vectors in a multidimensional
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space and the relationships among the catchments defined by a distance metric on this space. This approach has been used in

recent attempts to group regions with unsupervised machine learning algorithms such as K-means and hierarchical clustering60

(Sawicz et al., 2011; Wainwright et al., 2022; Kumar et al., 2011).

However, the analysis of large multivariate datasets has two main challenges that need to be addressed. The first being

the multicollinearity, which is the possibility of information redundancy in the data due to the presence of multiple variables

that provide similar information. Machine learning algorithms for classification generally have degraded performance when

multicollinearity is present. The second issue is the "curse of dimensionality" (Bellman, 1957), a phenomenon that emerges65

when using distance metrics to compute the relationship amongst data points represented as vectors of features (e.g., traits) in

a multidimensional space. When the number of dimensions increases, the density of data points drastically decreases making

the feature space more sparse (Houle et al., 2010), and causes the difference between the furthest and the closest distance to

a point to approach zero (Beyer et al., 1999). This results in degraded performance of similarity measures, and in particular

some metrics such as the commonly used Euclidean distance are more affected than others (Aggarwal et al., 2001).70

Many algorithms typically used for unsupervised classification, including machine learning methods such as K-means and

hierarchical clustering do not address the dual issues of multicollinearity and data dimensionality. The K-means algorithm

(MacQueen, 1967) is widely used across many fields and relies on the establishment of cluster centroids in a vectorial space

that act as representative points for the clusters. The data points are associated with a cluster by minimizing their Euclidean

distance, based on the variances within the clusters. However, as the dimension of the vector space grows, the Euclidean75

distance becomes unreliable to properly quantify the relationship among the data points (Aggarwal et al., 2001). Additionally,

the Euclidean distance discards information about the directionality of the data, producing a value that reflect only the relative

position of data points in the vector space, and neglecting the contribution of the different components that can be relevant for

classification. Another group of algorithms for cluster identification are referred to as agglomerative hierarchical clustering.

This class of methods aims to build a hierarchy amongst the data points, and different strategies can be used to find the optimal80

partitioning. Some of the most notable methods are the complete and single linkage clustering, which respectively aim to

maximize or minimize the distance of two points belonging to a different cluster (Müllner, 2011). Although these two methods

do not necessarily rely on the Euclidean distance, they are quite sensitive to outliers because they are based on the extreme (i.e.,

maximum or minimum) distances between points. Such dependence on single data points for partitioning goes against one of

the main concepts in the characterization of complex systems, where emergent properties (i.e., the grouping into clusters), are85

the result of a collective phenomena rather than the disproportionate contribution of a single element. The Ward’s algorithm (Jr.,

1963) mitigates the issue of outliers by introducing the minimum variance method, which is based on the Euclidean distance

and therefore subject to the same drawbacks as the K-means method.

Approaches based on network science have been used to investigate complex systems for many applications involving large

datasets (Newman, 2018; Börner et al., 2007). The ability of networks to capture complex interactions among different parts of90

a system and to highlight emergent behaviors has been proven to be extremely powerful (Strogatz, 2001; Boccaletti et al., 2006).

By treating each element as a node, and the relationship amongst them as edges, the structure of a network provides a natural

and intuitive representation of a complex system (Barrat et al., 2004; Albert and Barabási, 2002). Modeling the relationships
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amongst elements of a complex system as a network also enables the use of suitable distance metrics for large datasets,

presenting a solution to address the issues of data dimensionality and multicollinearity. Networks are used extensively in many95

different scientific domains. For example, in social science, political polarization has been detected with the presence of clusters

in a social network (Conover et al., 2011). In biology, protein-protein interaction networks are essential to understand the cell

physiology (Jeong et al., 2001), and plant trait networks are used to understand plant adaptation to different environments by

examining the complex relationships between their functional traits (He et al., 2020). In hydrology the concept of networks

has mainly been associated with the tree-like structure of rivers, and has enabled advances in understanding geomorphological100

processes (Rinaldo et al., 2006; Rodriguez-Iturbe and Rinaldo, 1997; Tejedor et al., 2017; Czuba and Foufoula-Georgiou,

2014). The use of networks as a generic framework for hydrological investigation has been postulated (Sivakumar, 2015) and

the concepts of complex networks have started to produce first encouraging results (Sivakumar et al., 2015; Tejedor et al.,

2018), however, to date, networks have not been used as a trait-based approach for catchment classification.

In this study, we introduce a novel, network-based method to classify catchments at multiple scales based on traits repre-105

senting their climatic conditions, vegetation, topography, soils, land use, and anthropogenic characteristics. This unsupervised

method utilizes two parallel networks to extract clusters of similar traits and catchments, while using dimensionality reduction

and a distance metric other than the Euclidean one, to address the issues of information redundancy and high dimensionality

present in large geospatial datasets. This approach enables characterization of catchments using a small number of interpretable

trait categories. We demonstrate the utility of our network-based method for analyzing catchment properties and associated hy-110

drological behavior for 9067 catchments and 274 traits across the continental United States. To our knowledge, this is the first

instance where networks have been used for trait-based catchment classification in the hydrological sciences. Our methods are

broadly applicable beyond catchment classification for analysis of other environmental traits (e.g., plant functional traits or

microbial traits) and large datasets.

2 Methods115

In this section we describe the dataset and the workflow for unsupervised trait-based classification of watersheds using the

network approach. The steps in our classification workflow are displayed in Fig. 1 flowchart and include: (1) downselection

and preprocessing of traits from the GAGES-II dataset (Sect. 2.1) by adequately transforming and standardizing trait values

(Sect. 2.2), (2) removal of redundant information and multicollinearity using the principal component analysis (PCA), which

produces low dimensional vector representations of both traits and catchments (Sect. 2.3), (3) computation of the pairwise120

similarities of the dimensionally-reduced vectors of both catchments and traits (Sect. 2.4), (4) generation of two similarity

networks, one where nodes are catchments and another where nodes are traits. In both cases edge weights represent the pairwise

similarities within the respective sets (Sect. 2.5), (5) classification via a clustering algorithm to identify trait categories and

groups of catchments with similar traits (Sect. 2.6), (6) characterization of the catchment clusters using the over and under

expression of traits categories (Sect. 2.8), (7) evaluation of the spatial coherence between catchment clusters (Sect. 2.7), (8)125

selection of representative catchments using network centrality measures (Sect. 2.9), (9) identifying hydrological behavior
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Figure 1. A schematic of the workflow used in this study.

based on streamflow indices across the catchment clusters and association with their characteristic traits expression (Sect.

2.10).
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2.1 Datasets

The primary dataset used in this study is the Geospatial Attributes of Gages for Evaluating Streamflow, version II (GAGES-II),130

as described in (Falcone, 2011). This dataset contains a comprehensive set of geospatial characteristics for 9,322 gaged catch-

ments in the contiguous United States (CONUS), as well as Alaska, Hawaii, and Puerto Rico with long flow records (at least

20 complete years of discharge record since 1950) or active record as of water year 2009. Here, we refer to ’catchments’ as the

area upstream of each individual gaging station in the GAGES-II dataset, of which 2,057 are considered pristine (’reference’)

and 7,265 are disturbed by human influences (’non-reference’).135

The geospatial attributes, referred to as ’traits’ in this paper, are compiled from various data sources for the CONUS (see

(Falcone et al., 2010) for details). The 354 traits in the dataset span climate (e.g. historical average precipitation and air tem-

perature), soil types and composition, geomorphology (e.g. topography), vegetation (e.g. extent of forests), surface waters (e.g.

extent of lakes and wetlands, stream characteristics such as sinuosity and Strahler order (Strahler, 1952)), and anthropogenic

influences (e.g. proximity to developed areas, land use or presence of dams). Some of the traits are present at different spatial140

scales, like elevation that is provided both for the exact location of the stream gauge and as an average across the watershed.

Several of the climate traits are calculated from the 800 m gridded PRISM dataset (Daly et al., 2000) derived from 30-year

records that span different time periods (primarily 1961-1990 or 1971-2000). We highlight that the runoff variables present in

the dataset are not measured values of the discharge, but instead are estimates from 1951-2000 computed by a water balance

model for 4 km grids using precipitation and temperature as inputs (Wolock and McCabe, 1999). Land use and land cover145

data are derived from the 2006 USGS National land cover dataset. We selected the GAGES-II dataset for our unsupervised

classification because of its comprehensiveness across catchments, diversity of traits and spatial coverage.

The second dataset used in this study consists of streamflow data obtained from the USGS National Water Information

Service (usg) for the period 1971 to 2000. We choose this time window to match the period when most of the traits of interest

in GAGES-II refer to.150

2.2 Data Filtering and Preprocessing

This study focuses on the 9067 stream gauges from catchments that are present within the CONUS in the GAGES-II dataset,

excluding the gauges in Alaska, Puerto Rico and Hawaii. Out of the 354 traits present in the dataset, we selected 274 that

had numerical values and discarded 74 categorical variables (e.g., geology type) or textual labels (e.g., county name). We

also discarded 6 additional traits: the station identification number (STAID), the 2 digit hydrological unit (HUC02) (Seaber155

et al., 1987) that each station belongs to, the latitude (LAT_GAGE) and the longitude (LNG_GAGE) of the station, the soil

with variable drainage characteristics (HGVAR) and the mean watershed aspect (ASPECT_DEGREES). The STAID, HUC02,

LAT_GAGE and LNG_GAGE variables contain explicit information about the location of the gaging stations. We chose to

exclude them to develop the classification scheme solely using natural and anthropogenic features, which avoids bias due to

spatial proximity and is transferable to any location. Additionally, their exclusion for the classification enables an unbiased160

evaluation of the emerging spatial patterns amongst the resulting catchment clusters. The HGVAR variable is removed because
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it has zero variance and thus cannot be standardized in the preprocessing routine. The ASPECT_DEGREES trait is removed

because its periodicity has poor physical coherence (both the quantity 0 and 360 convey the same information but are repre-

sented by the extreme values of the variable range). Furthermore the aspect information is present in two other variables that

we include, ASPECT_EASTNESS and ASPECT_NORTHNESS, which are the sine and cosine of the ASPECT_DEGREES165

variable respectively.

The preprocessing step is composed of two operations (step 1 in Fig. 1). The first involves feature transformations of non-

monotonic traits to a consistent monotonic function. For example, several traits denote the presence of points of interest in the

basin such as dams, canals, etc. However, when such a point is not present in the basin, the trait is assigned the value -999.

This creates an inconsistency with the physical distance values, and thus is remapped to be physically coherent for use as an170

input in the PCA method. For more details on the variable mapping to monotonic functions see Appendix A. The second step

is data standardization, that involves subtracting the arithmetic mean from each variable and dividing the result by the standard

deviation. As a result, the standardized values will have zero mean and standard deviation equal to 1. The standardization is

essential for the PCA, which requires the data to have a zero mean, and additionally scales variables in the dataset that span

up to five orders of magnitude into a comparable set of values and variances needed for the PCA projections. Each of the 9067175

catchments is represented as a vector of these filtered and remapped 274 traits. We provide the GAGES-II dataset preprocessed

according to these steps as part of the dataset (Ciulla and Varadharajan, 2023).

2.3 Dimensionality Reduction

The next step in the workflow (Step 2 in Fig. 1) involves reducing the dimensionality of the pre-processed dataset using the PCA

algorithm (Pearson, 1901), which is required for two reasons. First, it is used to mitigate the issue of the curse of dimensionality,180

which results in degradation of distance metrics in high-dimensional vector spaces such as the 274-dimensional trait vectors

used to represent catchments in our study (Aggarwal et al., 2001). Secondly, the dimensionality reduction minimizes the

redundancy in the dataset caused when information present in one trait is also represented (partially or totally) in other traits.

Information redundancy is generally detrimental for machine learning algorithms and needs to be addressed. This information

redundancy can be detected by computing the trait correlations and is referred to as multicollinearity. We used the Spearman185

coefficient (Spearman, 1987) to compute the correlation between all the possible pairs of traits and found that 84% of such

pairs are correlated with a p-value of 0.05.

We use the PCA algorithm to perform dimensionality reduction, which produces a lower dimensional vector representation of

the data and collapses the dimensions of linearly correlated variables. The information of such variables is retained in directions

called principal components that maximize the variance of the original data, thus addressing the issues of multicollinearity and190

high dimensionality. In the PCA, the dataset is represented as a matrix M ∈ Rn×f where n is the number catchments and f

is the number of traits, and each catchment is represented by a multidimensional vector of traits in the f -dimensional space

(Fig. 2). The PCA transforms the n×f matrix M into a new n×k matrix Mk, where the catchments are represented by n low

dimensional vectors of size k. The only free parameter of the algorithm is the number of final dimensions k, which reflects the
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Figure 2. Pictorial representation of a) Dimensionality reduction via PCA of the original matrix M into the transformed matrix Mk, encoding

information about catchments and the matrix of principal components PCk, encoding information about the traits, and b) The generation of

the catchments similarity matrix SC from the L2-normalized Mk and the traits similarity matrix ST from the L2-normalized PCk.

amount of information retained. By using the Cao’s implementation (Cao, 1997) of the false nearest neighbors (FNN) method195

(Krakovská et al., 2015), we set k = 20 (see Appendix B for details).

Hence, the original matrix M is transformed into the matrix Mk ∈ Rn×k containing 9067 vectors of dimension 20, where

each vector is a low-dimensional representation of the traits in each of the catchments, which is used in the following steps of

our analysis. Complementary to Mk ∈ Rn×k, the matrix of principal components PCk ∈ Rf×k contains f = 274 vectors of

size k that encodes information about how the traits are expressed in the catchments. The analysis of PCk ∈ Rf×k is used to200

identify the relationships and information redundancy amongst the different traits. To summarize, the PCA results in a set of

n k-dimensional vectors that encodes the trait information for each catchment, and f k-dimensional vectors that describe the

traits expressions.

2.4 Similarity Measure

We are interested in the relationship amongst the catchment and trait vectors, and their similarity via distance metrics. In this205

study we decide to use the cosine similarity as a similarity measure. Cosine similarity is defined as in Equation 1 (Salton,

1983):

SC(xxx,yyy) =
xxx ·yyy
∥xxx∥∥yyy∥ (1)

where x and y are two vectors with the same lengths. The cosine similarity is preferred over the classical euclidean distance

metrics since even the reduced-order vectors from the PCA are considered high-dimensional data for distance calculations,210
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and because the cosine distance retains information about directionality of the data (see Appendix C for additional explanation

about the rationale for the choice of this similarity measure).

The cosine similarity is computed as the dot product of the L2 normalized matrices Mk and PCk with their corresponding

transposed matrices (Fig. 2b). This results in two matrices SC and ST of size n×n and f × f that contain the pairwise

similarities between catchments and traits respectively. The diagonal elements of both matrices are unit values because they215

are the results of the dot product of normalized vectors with themselves.

2.5 Network Generation

In this study we adopt networks as a tool to investigate the relationship among the catchments. For more details on network

theory see Appendix D. We use the cosine similarity matrix SC to build a network NC where nodes are catchments and the

edges represent their similarity (Step 4 in Fig. 1). In particular, the edge weights are the cosine similarity values mapped to220

range between 0 and 1 (Equation 2):

A =
SC + 1

2
(2)

In this way two nodes are connected if they are similar as per the cosine metric, and the strength of the similarity is reflected

by the edge weights. The self-loops (i.e., an edge that originates from and ends at the same node) given by the unitary values

of the diagonal similarity matrix are deliberately discarded. The analysis of this network reveals insights about the similarities225

of the catchments. In particular, we investigate connectivity patterns in the network to reveal clusters of nodes that are more

similar to each other than to the rest of the network.

By assigning an edge to each pair of nodes using the similarity metric we produce a fully connected network, namely a

network with all the possible NC(NC − 1)/2 edges. Such a network is a relatively uninteresting one, because the presence

of all possible edges hides eventual complex topological patterns present in it. In order to reveal such patterns, we apply a230

filtering mechanism to our set of edges. In particular, we use the disparity filter as described in (Serrano et al., 2009). Such

a method takes a network as an input and filters out some of its edges returning what is called the network backbone. The

disparity filter assumes complete homogeneity among the edge weights with the null hypothesis that the weights of the edges

incident to a node are uniformly distributed. Then it retains only the edges whose weight magnitude is incompatible with such

an hypothesis according to a certain significance level. By repeating this process for each node in the network, we generate235

the network backbone, where all the edges are statistically validated against the uniform distribution hypothesis. Only edges

are affected by this technique, while the nodes are unaffected and their number in the network stays the same. The method

does not prescribe a universal value for the significance level, which has to be evaluated case by case. In our implementation

of the disparity filter, we choose a significance level where 95% of the nodes in the network belong to the giant component,

which is the connected component in a network that includes most of the nodes. The choice of 100% of the nodes in the giant240

component is impractical because there could be nodes that potentially never connect to any other ones making the 100% value

impossible to reach.
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The procedure used for generating the catchments network is also used to produce a network of traits NT via the matrix ST

where each node is a trait and the edges connect two traits, with weight representing how similarly they are expressed across

the catchments. Similar to the catchment case, we extract the backbone network to reveal complex patterns among groups of245

traits.

For catchments, the backbone network NC contains 9067 nodes and 559207 edges. Remarkably, the number of edges

corresponds to only 1.4% of the ones that can possibly be present in a fully connected network of such a size. In the case of

the traits, the backbone network NT has 274 nodes and 1422 edges, comprising 3.8% of all the possible ones. These networks

are used in the following step to identify clusters of similar catchments and traits.250

2.6 Clusters Identification

A complex network is a network with non trivial connectivity patterns (Strogatz, 2001; Boccaletti et al., 2006). One of the

main hints of the presence of such patterns is given by the heterogeneous distribution of the values of the clustering coefficient,

a topological measure of the tendency of a network to form groups of nodes that are more connected to each other than with

the rest of the network (Wasserman and Faust, 1994; Scott, 1992) (see Appendix E for a detailed discussion on clustering255

coefficients). These groups of nodes are called clusters and there are a variety of algorithms to discover them (Fortunato,

2010).

To obtain the division of nodes into clusters we implement the Infomap clustering algorithm (Rosvall and Bergstrom, 2008)

for both the catchment and the trait networks. This is an agglomerative clustering method for networks that starts by assigning

each node to its own cluster and uses the map equation as described in (Rosvall et al., 2009) to optimize the iterative merging260

of these partitions. One advantage of using the Infomap algorithm is its capability of splitting already formed clusters at

successive iterations, if this action benefits the clustering optimization function. When applied to the catchment network, 95%

of the nodes in the entire network are contained in the top 71 clusters ranked based on their size. We provide the number of

clusters at 95% coverage because, as usual for complex networks, the cluster size spans several orders of magnitude, and thus

accounting for all the clusters is inappropriate. The cluster size ranges from 1 to 953 nodes, with the latter comprising about265

10% of the nodes of the entire network. Because of how the catchment network is built, catchments within a cluster have more

similar traits than with the rest of the network. When the Infomap algorithm is applied to the traits network, the number of top

clusters in size that comprises 95% of the network is 20 and their sizes range from 1 to 25. For this network the clusters denote

groups of traits that have similar expression patterns across the catchments.

The cluster identification represents the first milestone of our workflow (Step 5 in Fig. 1) resulting in classification of both270

traits and catchments using a completely unsupervised methodology. The only choices we made were informed by statistical

analysis to set the two free parameters of the framework, namely the number of dimensions for the PCA algorithm and the

confidence level for the backbone disparity filter.
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2.7 Spatial Homogeneity of Catchment Clusters

Contrary to supervised methods that compute model performance using testing data, unsupervised algorithms like ours do not275

have a direct means of assessing their performance. Thus, to identify a measure of performance of our unsupervised catchment

classification, we use the principle of Tobler’s first law of geography, which states that "everything is related to everything else,

but near things are more related than distant things" (Tobler, 1970). This law, applied to our classification analysis, would mean

that there is a higher probability of catchments that are geographically close to each other belonging to the same cluster. To

quantify this concept we compute the global homogeneity measure Hglobal as the average probability that for each catchment280

the nearest neighbor in terms of spatial proximity belongs to the same cluster. This quantity can be interpreted as geographical

homogeneity in the sense that catchments surrounded by others within the same cluster make the system more homogeneous.

Hglobal =
1

NC

∑

i

hi (3)

and

hi =





1 if ci = cj

0 otherwise
(4)285

Here NC is the total number of catchments, j is the closest catchment to catchment i, ci and cj are the clusters that catchments

i and j belong to. Hglobal provides a single value for the entire set of catchments, where values closer to 1 indicate that the

system is more homogeneous. Additionally, we compute a within cluster homogeneity measure, Hi
cluster, as the probability

of finding catchments belonging to cluster i within the convex hulls Ai of all catchments in ci. This metric is similar to the

relative abundance of species in ecology, and is computed for each cluster as the ratio between the number of catchments N i
A290

belonging to ci in convex hull Ai, and the overall number of catchments NA within this area:

Hi
cluster =

N i
A

NA
(5)

If a convex hull contains only one type of catchment cluster, which by default will be the cluster that generates the convex

hull, then the value of Hi
cluster is equal to 1, indicating complete homogeneity.

2.8 Characterization of Catchments Clusters295

One of the goals of this study is to provide a methodology that enables the interpretability of the resulting catchment classi-

fication. This would correspond to answering the question: what are the characteristic traits of the catchments belonging to

a particular cluster? We answer this question by identifying the set of traits that are over or under expressed amongst all the

nodes of a particular catchment cluster (Step 6 in Fig. 1).
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This is done by computing the z-score of each trait for each catchment in the dataset. This value represents the unique300

expression of a trait in a specific catchment. Next, the z-score values are aggregated for each catchment cluster as an arithmetic

average producing a mean z-score of each trait for each catchment cluster:

zuv =
1
∥cv∥

∑

w∈cv

xuw −µu

σu
(6)

Here zuv is the mean z-score of the trait u in the cluster cv of size ∥cv∥. The value xuw is the value of the trait u for the

node w in the cluster cv . µu and σu are the average and standard deviation of the trait u in the entire dataset.305

In this way, a high absolute value of the average z-score represents a substantive expression of a trait in a particular catchment

cluster, with positive values indicating overexpression and negative values denoting underexpression of the trait.

However, investigating the unique expression of each of the 274 traits for each catchment cluster would disregard the re-

dundancy of information identified by the trait clusters and neglect eventual collective contribution of several traits. Instead,

a better analysis of trait expression can be achieved by considering their z-score values within the context of other traits in310

the dataset, by leveraging the clusters produced by the trait similarity network. So, instead of investigating the expression of

each trait in isolation, we aggregate the z-scores of all the traits belonging to each cluster in the network of traits. In this way

we characterize each catchment cluster by the expression of a few, easily interpretable groups of traits (referred to as trait

categories). The advantage of the investigation of catchment clusters in the context of the network of traits will become more

evident when we discuss the results in Sect. 3.315

2.9 Identification of Representative Catchments

One advantage of modeling a system as a network is the ability to use a multitude of metrics from graph theory (Newman,

2018; Börner et al., 2007). One of the most used ones is the degree centrality (Börner et al., 2007), defined as the number of

edges incident to a node.The nodes at the other end of these edges are referred to as neighbors. The interpretation of the degree

varies according to the nature of the edges but, in general, nodes with high degree play a more important role in the network320

and are often referred to as hubs. In the case of a similarity network, a node with a high degree centrality identifies an element

that is very similar to many others, while a low degree node is similar to fewer nodes, and zero degrees indicates that the node

is disconnected from the rest of the network. High degree nodes in similarity networks are the best candidates to be selected

as representative nodes because they have the highest number of neighbors. By sorting the nodes according to their degree

centrality, we can select a small number that are representative of the entire network.325

We apply this concept to the network of catchments to select a small set that are representative of the cluster they belong to

(Step 8 in Fig. 1). This is done by ranking catchments within each cluster and selecting nodes based on the degree centrality

measure. However, we do not simply choose the nodes that have the highest degree centrality, since that could potentially lead

to selection of two or more nodes that are topologically close to each other but both share a high number of neighbors, thus

undermining network coverage and resulting in redundant choices of representative catchments. Thus, to promote network330

coverage and minimize superfluous representation, our method first selects the node with the highest degree centrality in a
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cluster, and then removes both the selected node and its neighbors from the cluster. The new degree-based ranking for the

remaining nodes is then updated due to the removal of nodes. We continue this selection process until the size of the union

set of representative catchments and their neighbors is equal to 95% of the size of the cluster they are extracted from.Using

this methodology, nodes with an initially high degree centrality, which share many neighbors with a selected catchment (i.e.,335

is topologically close from a network perspective), will have their degree reduced and are less likely to be selected.

2.10 Analysis of Streamflow Indices

The unsupervised classification workflow developed in this study finds groups of similar catchments using only traits, and

does not use not any information on hydrological variables such as stream flows or temperature. Hence, we can use the

classification to examine the hydrologic behavior of the catchment clusters and their associated trait expressions. Here, we340

focus on streamflow regimes following the method in (Olden and Poff, 2003). They recommend using 34 representative flow

indices, which are considered to minimize collinearity based on a review of 171 indices calculated using long-term flow records

from 420 sites from across the CONUS. The list of these indices can be found in the Table 1 of file SI_1 in the data repository

(Ciulla and Varadharajan, 2023) associated with this paper.

To compute the indices, we use the historical record of river mean daily discharge values for the 9067 gaging stations, re-345

trieved using the BASIN-3D software (Varadharajan et al., 2022), which synthesizes timeseries data on-demand from different

data sources including the USGS National Water Information System (NWIS) (usg). We only consider the discharge data from

1971 to 2000 to match the time range of most of the traits in the GAGES-II dataset. We eliminate stations with more than 50%

of missing values in our time range, resulting in a downselected set of 5251 stations. To compute the 34 hydrologic indices,

we use the EFlowCalc package provided by (Hallouin, 2021) that discards missing values in the computation of aggregated350

measures such as averages or standard deviations.

We aggregate indices as average values for each catchment cluster, after further downselecting to stations that are within 34

clusters containing at least 50 catchments. On average, 59% of the catchments in each of these 34 clusters have a corresponding

long-term flow record for which we computed the hydrological indices. Given this relatively high percentage, we use the

averaged streamflow indices from these catchments as proxies for the hydrological behavior of the entire cluster.355

For all the hydrological indices, we use the statistical Kruskal–Wallis test (Kruskal and Wallis, 1952) to determine if there

is a statistically significant difference between the distribution of the values between individual clusters and the rest of the

catchments. This test does not assume normality in the data distribution and is the non-parametric alternative to the ANOVA

method, which are necessary considerations because none of the streamflow index values were normally distributed as per the

Shapiro test (Shapiro and Wilk, 1965) . The result of the Kruskall-Wallis test indicates if the indices grouped according to the360

clusters are drawn from the same distribution as the entire set. If that is not the case, it means that catchment clusters resulting

from our trait-based classification have different streamflow characteristics.
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3 Results

3.1 The Traits Network

The traits network has 274 nodes representing individual traits and 1422 edges connecting the nodes (Fig. 3). This network365

encodes the similarity between catchment traits as edge weights. We use the network edges in the clustering to generate groups

of traits that are connected to each other, and hence contain similar information. This enables aggregation of our analysis from

individual, redundant traits to a smaller number of interpretable, higher-level trait categories that represent similar properties

of the catchments.

Figure 3. The network of traits, where the nodes are traits and edges represent their pairwise similarity. The nodes are colored according to

the different clusters and matching color numbers are in descending size order as shown in Table 1.
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The size of the clusters range from 35 nodes to 1 node (Table 1), where the 20 largest clusters contain 95% of all nodes in370

the network. All the clusters are labeled with a unique numerical identifier and are assigned a name that is representative of

the trait category. For instance, we refer to cluster number 2 as the "Temperature" trait category since it includes nodes like

average annual air temperature for the watershed (T_AVG_BASIN), and other related quantities such as the mean day of the

year of first freeze (FST32SITE). Analogously, cluster number 0 includes nodes like the percentages of watershed land covered

by development areas at high (DEVHINLCD06), low (DEVLOWNLCD06) and medium intensity (DEVMEDNLCD06). Thus375

we identify cluster 0 as "Developed Areas" to indicate the presence of these and other traits that represent the extent of human

development in the catchment. A full list of traits contained in each cluster of the network is provided in Table F1, while a

more comprehensive table of trait categories, which includes descriptions of each trait, can be found in the Table 2 of file SI_1

in the dataset (Ciulla and Varadharajan, 2023) associated with this paper. In the same repository the traits network topology is

also made available.380

ID Cluster name Cluster size Anthropogenic

0 Developed Areas 35 yes

1 Precipitation and Runoff 31 no

2 Temperature 22 no

3 Croplands 22 yes

4 Croplands and Canals 16 yes

5 Croplands and Dams 15 yes

6 Barren Soil and Deciduous Forests 12 no

7 Elevation 12 no

8 Evergreen Forests 12 no

9 Woody Wetlands and Croplands 11 yes

10 Lakes, Ponds and Reservoir 10 yes

11 Pastures and Grasslands 10 yes

12 Fine Soils 10 no

13 Major Dams 9 yes

14 Summer Precipitation 7 no

15 Herbaceous Wetlands 7 no

16 Mixed Forests 6 no

17 Coarse Soil 6 no

18 Perennial Ice and Snow 5 no

19 Shrublands 5 no

20 Lower Order Streams 5 no

21 Higher Order Streams 4 no
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ID Cluster name Cluster size Anthropogenic

22 Non Croplands 1 yes

23 Overland Flow 1 no

24 Bulk Density 1 no

Table 1: The list of trait categories identified by our methodology as clusters generated by the network connectivity patterns

using the GAGES-II trait dataset. The IDs match the numbers in Fig. 3, while cluster names are humanly assigned to represent

the majority of the traits in the cluster. Cluster size refers to the number of nodes in the cluster, and the anthropogenic column

indicates if the traits within the cluster are associated with human activities.

3.2 The Catchment Network

Figure 4. Geographical representation of the catchment clusters, where each symbol represents a catchment, and is located at its corre-

sponding gaging station. The catchment network representation with nodes and edges is shown in the figure inset. The numerical identifiers

correspond to the IDs in table 2. The colors depict different clusters, and are consistent between the map and the network diagram. Note

that due to the lack of a palette with enough distinguishable colors, some of the clusters are indicated using different symbols when colors

overlap.

In the catchments network each of the 9067 catchments is a node, while the 559207 edges connect pairs of catchments with

similar traits. The network provides information about catchment similarity, and nodes belonging to a cluster are more similar

to each other than the rest of the network. The clusters range from 953 nodes to 1 node in size. The top 71 clusters contain
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95% of the nodes in the network, while the 34 clusters with size greater than 50 nodes cover 84% of all nodes. We provide the385

catchments network topology and partition into clusters in the dataset (Ciulla and Varadharajan, 2023).

Figure 4 shows the spatial distribution of the catchment clusters using the coordinates of their corresponding gaging stations.

We find that catchments within a cluster tend to be located in the same region, even though no geographical coordinates were

used as traits in our network methodology. For example, large portions of the Midwestern US are predominantly cluster 2

(green circles) or the coastal area of the Southeastern US are cluster 4 (purple circles). However, clusters 1 (orange circles),390

is distributed across the CONUS and comprises agglomerates of dense nodes separated by long distances. The global homo-

geneity measure of the catchments is 0.71, which means that for 71% of the catchments, their nearest neighbor belong to the

same cluster. This is significantly higher than the homogeneity measure of 0.04 when the clusters were randomly distributed

throughout the CONUS.

In Sect. 3.3, we show how the predominant traits of the catchment clusters can be used to interpret this result.395

3.3 Characterization of Catchments Clusters with Trait Categories

Figure 5. Spatial distribution of two of the catchment clusters from Fig. 4, shown separately for easier visualization. Maps showing the

spatial distributions individually for the 34 clusters of size greater than 50 are included in the file SI2 of the dataset (Ciulla and Varadharajan,

2023) associated with this paper

We infer the traits that are over- or under- expressed in each catchment cluster using the z-scores from the traits network. We

use two clusters as examples (Fig. 5) to highlight how the network methodology allows interpretation of the characteristics of

each catchment cluster. The catchments within cluster 0 (blue circles) are spread across the Western US only, while cluster 1
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(orange circles) is distributed across the CONUS. The z-scores of every trait for the two clusters are shown in Fig. 6, where each400

node is sized according to the absolute values of their z-score. while the color reflects the sign. For both catchment clusters,

the respective traits network contains entire groups of over and under expressed nodes.

Figure 6. Network of traits for a cluster 0 (blue circles) and b cluster 1 (orange circles) shown in Fig. 5. Nodes are colored according to the

z-score values computed for the two catchment clusters. Node size is proportional to the absolute values of the z-score. Traits that are over

expressed are shown in red, and those that are under expressed are shown in blue. In this way nodes depicting over and under expressed traits

have bigger nodes and are more visible

Leveraging the trait clusters, we condense the information of the unique expression of the 274 traits (Fig. 6) into 25 inter-

pretable categories (Fig. 7) by computing the cluster-wide average of the traits z-scores.

Cluster 0 (blue circles) shows over expression of the category Elevation (z-score=1.49) and Evergreen forests (z-score=1.04)405

and under expression of the Temperature category (z-score=-1.28). Based on the expression of these and other trait categories,

we infer that the blue cluster generally represents mountainous forested areas. Cluster 1 (orange circles) is dominated by the

trait category named Developed areas (z-score=2.29), indicating the catchments represented by the orange nodes are located in

proximity to developed areas such as cities. The fact that this cluster is dominated by an anthropogenic category is consistent

with the heterogeneous nature of its spatial pattern. In contrast, the rather homogeneous distribution of catchment cluster 0 is410

likely due to the prominence of climatic trait categories that are more correlated with the geographical location.

The list of trait categories and their relative z-score values associated with all the catchment clusters identified using our

methodology is provided in the dataset (Ciulla and Varadharajan, 2023).A brief summary for clusters with size greater than 50

is shown in Table 2 along with their corresponding spatial homogeneity measures.
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Figure 7. Barchart showing the cluster aggregated z-scores of a the cluster 0 (blue circles) and b cluster 1 (orange circles) from Fig. 5.

ID Size Brief Descriptor of Dominant Trait Categories Homogeneity

0 953 Low Temperature, High Elevation, Evergreen Forests 0.53

1 729 Developed Areas 0.12

2 673 Croplands, Fine Soils 0.57

3 450 High Elevation, Low Summer Precipitation, Shrublands 0.28

4 419 High Temperature, Low Elevation, Wetlands 0.79

5 395 Low Temperature, High Summer Precipitation, Mixed Forests 0.49

6 341
High Precipitation and Runoff, High Elevation, Low Summer

Precipitation, Evergreen Forests
0.33

7 337 High Precipitation and Runoff, Evergreen Forests 0.80

8 292
Low overall Precipitation and Runoff, High Temperature, Shrub-

lands
0.28

9 240 Pastures and Grasslands 0.69

10 214
High Temperature, Low Elevation, Woody Wetlands and Crop-

lands
0.55

11 210 Low Temperature, Lakes and Reservoirs, Wetlands 0.63

12 202 Low Summer Precipitation, Mixed Forest, Shrublands 0.70

13 195 High Summer Precipitation, High Temperature, Croplands 0.17

14 186 Low Temperature, Herbaceous Wetlands, Croplands 0.53

15 177 Low Precipitation, Pastures and Grasslands 0.19

16 170 High Temperature, Shrublands 0.67
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17 138
High Precipitation and Runoff, Barren Soil and Deciduous

Forests
0.82

18 132 High Temperature, Major Dams 0.07

19 124 High Temperature, Pastures and Grasslands 0.71

20 112
Low Temperature, High Summer Precipitation, Croplands,

Mixed Forests
0.36

21 108 High Elevation, Barren Soils and Deciduous Forests 0.10

22 100 High Summer Precipitation, Lakes and Reservoirs 0.11

23 98 High Summer Precipitation, Barren Soils and Deciduous Forests 0.54

24 95 Croplands, Fine Soils 0.63

25 76 High Temperature, Low Elevation, High Summer Precipitation 0.30

26 69 Wetlands and Croplands 0.59

27 64 High Summer Precipitation, Barren Soils and Deciduous Forests 0.76

28 63
Low Temperature, High Elevation, Low Summer Precipitation,

Lakes and Reservoirs
0.07

29 61 High Summer Precipitation, Croplands 0.62

30 61
High Temperature, Major Dams, Woody Wetlands and Crop-

lands
0.17

31 54 High Temperature, High Summer Precipitation, Mixed Forests 0.29

32 53
High Temperature, Low Summer Precipitation, Developed Ar-

eas
0.19

33 51 High Temperature, Low Elevation 0.12

Table 2: Table of dominant trait categories and spatial homogeneity measures of the 34 catchment clusters with at least 50

nodes. The clusters are sorted by decreasing size (i.e., number of nodes in the cluster). Values shown are the cluster unique

ID, cluster size, a brief descriptor based on the dominant over and under expressed traits categories, and cluster geographical

homogeneity measure.

3.4 The Representative Catchments415

Here, we provide an example of results from our methodology to identify representative catchments using the two clusters

highlighted in Sect. 3.3. A total of 10 catchments are considered representative of cluster 0, and 14 are considered representative

of cluster 1 (Fig. 8). In both cases, the selected catchments represent at least 95% of the nodes in each cluster. The selected

representative nodes are geographically distributed within the spatial domain of the cluster they belong to. This behavior is

the result of the combined effect of (1) the intrinsic multiscale connection patterns in the network, where heterogeneity at420
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Figure 8. Geographical representation of clusters 0 and 1, highlighting locations of their representative nodes. The catchment names, as

specified in the GAGES-II dataset, are shown in the figure legend with same color as the circles in the map.

different scales produces groups of more densely connected nodes within the clusters, and (2) the strategy of node selection,

which promotes representative nodes to be spread across each cluster. These representative catchments can be used to prioritize

locations for observations or modeling purposes.

3.5 Hydrological Indices and Trait Categories

The results from the Kruskal-Wallis test show that all of the p-values of the test for the 34 indices are below the common425

statistical significance threshold of 0.05. This indicates that the hydrological indices for each cluster are not drawn from the

same distribution, suggesting that the catchment clusters have different streamflow regimes. See Sect. 4.5 for further discussion

about the distinct hydrological behavior across the catchment clusters.
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4 Discussion

4.1 Advantages of our network-based method as a tool for classification430

In this study we present a novel methodology to classify river catchments in an unsupervised manner using network science. We

chose to use the GAGES-II dataset as the source of information for catchment characterization because of its comprehensive

set of more than 300 natural and anthropogeneic traits across more than 9000 catchments in the CONUS. In our methodology,

we use the combination of the PCA algorithm, networks, and the cosine similarity metric to mitigate the issues of information

redundancy and high dimensionality in the data. The PCA partly resolves these issues by projecting the original high dimen-435

sional vector data into a smaller set of orthogonal directions called principal components. However, there are limitations to how

small the resulting vectors can be, because data compression inevitably results in some loss of information. It is not uncommon

to retain a high number of dimensions after PCA - 20 in our case - which still results in degradation of the distance metric and

has some redundant information. Thus applying K-means or hierarchical clustering algorithms after PCA on large dimensional

datasets is not a solution to addressing the issues of multicollinearity and high data dimensionality given the dependence of440

these methods on the Euclidean distance.

Hence, we use networks to model the relationships amongst elements of the system represented by the high dimensional

vectors. The elements are the nodes of a network connected by edges that represent their pairwise distance metric, which are

not bound to be points in a vectorial space. Instead we use their vectorial representation to compute any appropriate distance

metric and that information is reflected in the connection between nodes as edge weights. Thus, the task of finding clusters in445

the Euclidean space is shifted to the identification of connectivity patterns in a network. In this respect, the network constitutes

a generalized tool for system analysis where edges can represent different types of distance metrics or other pairwise relational

quantities. In our study, we chose to use the cosine distance to describe the relationships amongst the reduced vectors of both

traits and catchments since it is more appropriate for use in high dimensions and preserves the directionality of the data. The

rationale for the choice of this similarity metric over the Euclidean distance is discussed in Appendix C. The use of the network450

enables us to move to this alternate distance metric, surmounting issues encountered by common methods like the K-means

and Ward’s hierarchical clustering that rely on the Euclidean distance to generate the division into classes. Once we set up

our investigation as a network analysis the problem of classification is translated into finding clusters in the networks. Many

clustering algorithms are available for network science (Fortunato, 2010), and our method implements the widely used Infomap

algorithm (Rosvall and Bergstrom, 2008).455

To support our choice of a network-based method and an alternate distance metric, we compare the clusters obtained from

our approach with the ones resulting from the traditional K-means and hierarchical clustering approaches. Since these are all

unsupervised methods, we cannot use any target variable to compute the accuracy of the classification to compare performance.

Instead, we use the dissimilarity of the generated clusters as a metric for model performance. More specifically, given a

classification, we want the identified classes to be as different as possible from each other. In other words, when comparing460

aggregation methods containing a certain number of clusters, we consider the approach that partitions elements into groups that

are more distinct as superior. For this comparison, we replicated our analysis using the Ward’s hierarchical clustering method
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(Jr., 1963) and the K-means algorithm (MacQueen, 1967) to find catchment clusters using the vector representation after the

PCA dimensionality reduction step. We set the free parameters of these two methods to generate the same number of clusters

as our workflow that covers 95% of the catchments. For both new partitions, we computed the traits characterization with the465

aggregated z-scores as described in Sect. 2.8. Clusters are then represented by vectors of average traits z-scores and can be

compared with each other by calculating the cosine distance. For each catchment cluster, the highest value of the pairwise

similarities computed for all nodes is used as a conservative measure of within cluster similarity, for the purpose of assessing

how far apart the clusters are from each other. The median cluster similarity for our network-based workflow is 0.72, while

for hierarchical clustering and K-means this value is equal to 0.79 and 0.83 respectively. This shows that our method produces470

more distinct clusters, and is hence a better choice than K-means or the Ward’s hierarchical approach for our classification

tasks.

Besides addressing the challenges of information redundancy and data dimensionality, our analysis using the catchment-

trait networks is interpretable, as it can quantitatively determine trait categories that are over or under expressed in catchment

clusters (Sect. 4.2). Additionally, we are able to use a variety of network-specific metrics that highlight the role of the elements475

of the system at different scales of the network. For example, we use the degree centrality computed using the nearest neighbors

of a node as a local measure to identify catchments that have a high number of connections to others. In a similarity network,

a node with a high degree measure means it is similar to many other nodes, and hence we use the degree centrality to generate

sets of representative catchments. At an intermediate scale, the clustering coefficient reveals how many neighbors of a node

are connected to each other, revealing heterogeneous, non-trivial connectivity patterns that indicate the presence of clusters. At480

a global scale across the network, we leverage the flow of information traveling through the nodes in the Infomap algorithm

(Rosvall et al., 2009) to generate the clusters. Additionally, statistical methods can be applied to select the information contained

in the edges of the network (see Sect. 4.4.2 for an example). Although we demonstrate the use of this workflow for catchment

classification, the methodology can easily be extended to analyze other types of environmental trait datasets such as microbial

or plant traits.485

4.2 Interpretability Enabled by Simultaneous Analysis of Catchment and Trait Networks

Machine learning techniques are capable of proficiently learning patterns in the data (Bishop and Nasrabadi, 2006). However,

they are often blackbox methods that do not provide the tools for adequate interpretation of such results. In the case of super-

vised approaches, the accuracy of a method can be evaluated using a test set, which is not an option for unsupervised algorithms

because of the lack of labeled data. Hence, we simultaneously analyze the information from the networks of traits and catch-490

ments to interpret the results for a deeper understanding of the specific set of traits that result in classification of a catchment

cluster. Specifically, we characterize the clusters of catchments by investigating the traits that are over or under expressed,

which are grouped into a small, interpretable set of trait categories. The generation of the trait categories is not only conducive

to reducing the number of traits by aggregating them into clusters, but also allows for human interpretation by synthesizing a

group of quantitative traits into a higher-level category. For example, a set of traits related to air temperatures, when clustered495

together are no longer isolated measures and are easier to interpret when presented as an aggregated "Temperature" category.
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Thus, interpretability is enabled with the generation of a small number of trait categories whose composition can be easily

visualized and statistically analyzed.

Topological proximity at the cluster level is also meaningful. Clusters that share a connection, and are close to each other,

are also more related to each other. For example, cluster 3 in the trait network, which includes agricultural traits, and cluster 5,500

which has traits related to cropland as well as dams are topologically close with many shared edges, and also appear intuitively

to be related to each other.

Finally, the identification of dominant traits is not only useful to characterize individual catchment clusters (Fig. 7), but can

also be used to compare across different clusters. For example, in Fig. 9 we show the differences between the traits categories of

two catchments clusters located in the Western US. Since the cluster locations overlap geographically, we use the differences in505

the z-score values of the trait categories to understand how the groups were split by identifying which categories are relatively

over expressed in the two clusters. In the rest of the discussion sections, we leverage the trait categories associated with

catchment clusters to reveal insights relevant to their hydrological behavior.

Figure 9. a: Geographical representation of the two catchment clusters that are spread across most of the Western US. b: bar charts showing

the difference in z-scores of the trait categories between the two clusters shown in the map. Positive values denote categories more present

in cluster 0 (blue circles), while negative values are more present in cluster 3 (red circles). We can deduce that cluster 0 refers to catchments

with higher precipitation and runoff, higher elevation and the presence of evergreen forests, while the cluster 3 has higher temperatures and

shrublands. Note that these are relative quantities, and in fact cluster 0 overall has lower precipitation and runoff in comparison to the rest of

the network as shown in Fig. 7.

4.3 Spatial Homogeneity of Catchment Clusters with Natural and Anthropogenic Traits

The results in Sect. 3.5 show that in general the catchment clusters tend to be geographically co-located throughout the CONUS,510

with a few exceptions. This means that the trait-based classification results in clusters that have some geographical homogene-

ity, which would not occur with a random distribution of clusters. However, at the cluster level, we see a high variability of
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spatial homogeneity as shown in Table 2. This reveals that the geographical domain generated by each cluster (i.e., its convex

hull), contains catchments from other clusters, and the extent of the relative abundance changes across clusters.

We leverage the information from the trait categories to investigate this variability. We find that most of the trait clusters515

are composed of mostly anthropogenic or natural traits only. This result not only provides additional validation of the trait

classification, but it can be used to identify the effects of human influence on the hydrological behavior of catchment clusters.

Thus we divide the catchment clusters into three groups of increasing (low, mid, high) human influence. Our hypothesis is that

clusters dominated by natural factors, with little human disturbance, should exhibit more spatial homogeneity as a consequence

of the environmental forcing. Conversely, clusters with strong anthropogenic influences, like urban areas or dams, are less520

coupled to natural factors and should display lower homogeneity. A middle ground is constituted by clusters where the human

impact is interlaced with natural factors like in croplands. We first sorted the catchment clusters from the lowest to the highest

value of cluster homogeneity (Fig. 10a). The six clusters with strong anthropogenic influence are amongst the last ten with

respect to their spatial homogeneity, confirming that the human activities are associated with a more heterogeneous spatial

distribution of catchment clusters. However, none of the clusters have a homogeneity measure lower than the one assuming525

a random cluster distribution. Note that the spatial homogeneity is computed using geographical coordinates and does not

account for the elevation of the catchments. This could explain lower homogeneity values in some of the catchment clusters

dominated by natural factors.

Figure 10. a: Bar chart of the cluster homogeneity measures sorted in ascending order. The colors represent the anthropogenic influence,

with high values in red, low in green and mid (i.e. interlaced human and natural factors) in yellow. The bars shown as black lines represent

values assuming random co-location of clusters. b: Examples of convex hulls for a cluster with significant human influence (cluster 18), one

with predominantly natural traits (cluster 7), and a cropland dominated cluster (cluster 26). The color of the convex hull polygon matches the

color of the catchments cluster that generated it.
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4.4 Trait Relevance at Different Spatial Scales

So far, our study has only focused on the classification of the catchments at the continental scale. However, our proposed530

method can be applied at multiple spatial scales as long as relevant trait information is available. Here, we show two different

approaches that can be used for catchment classification at different scales.

4.4.1 Multiscale analysis at regional and continental scales

First, we apply the workflow previously used for the CONUS scale at the regional scales to obtain the trait and catchment

networks. We demonstrate this approach for the Upper Colorado River Basin (UCRB; USGS HUC 14). There are 368 catch-535

ments within this area, which is about 25 times smaller than the total number across the CONUS. Similar to the results from

the CONUS-scale, we find a well-defined geographical coherence among the nodes of each catchment cluster (Fig. 11).

Figure 11. a: Geographical representation of the network of catchments in the Upper Colorado River Basin, with the HUC 14 boundary

shown in black and the locations of the gaging stations used to map the catchment clusters (similar to Fig. 4) b: bar charts of the z-scores of

the trait categories for two of the clusters in this basin. The colors in the map and the bar charts match. The blue nodes are located on the east

side of the basin while the orange ones are distributed in the lower half of the basin.

Not surprisingly, the trait network connectivity and cluster composition changes to reflect the characteristics of this subset

of catchments. The characteristic z-scores calculated for this subset can provide interpretation of the traits expression in this
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region. New trait clusters emerge that are more relevant to the UCRB, like the one representing areas at high elevation cov-540

ered with sandy soils. Some trait clusters, like the one consisting of temperature-related traits or the cluster associated with

shrubland-dominated environments are present at both the CONUS and this particular regional scale. The complete list of traits

network clusters for the UCRB can be found in the Table 3 of file SI_1 in the data repository (Ciulla and Varadharajan, 2023)

associated with this paper.

4.4.2 Edge Weights Filter Tuning545

Another way to capture insights at different spatial scales is to tune the edge filtering parameter as discussed in Sect. 2.5.

By changing the significance level of the disparity filter, we tune the connectivity of the network of catchments to generate

larger or smaller clusters. There is no prescribed granularity at which the system should be investigated, and we can make

adjustments to fit the goals of the analysis. Here, we provide an example where a smaller value of the significance level acts

as a higher threshold for the edge weights, reducing the number of edges in the network of catchments and producing smaller550

clusters. Here, cluster 4, generated using the original filter threshold that was spread across most of the South Atlantic US

(purple circles in Fig. 4) is split into the two new clusters as shown in Fig. 12. We again use the difference between the z-scores

of the trait categories in the two newly generated clusters to interpret the partitioning. We find that the difference is primarily

due to separation of catchments that have predominant traits as Herbaceous Wetlands, Croplands and Canals and moderately

higher temperatures and summer precipitation, which tend to be concentrated in the Florida peninsula, in contrast to those with555

Evergreen Forests and Lower Order Streams, which were more prevalent in the rest of the original cluster (Fig. 12b).

Figure 12. a) Geographical representation of two clusters, shown in different colors, of the network of catchments generated with smaller

significance level of the disparity filter. The union of the nodes of these two clusters corresponds to the cluster 4 in the South Atlantic US

in the original catchment network that are shown as purple circles in Fig. 4. b) Bar chart of the difference between the z-scores of the two

clusters. The color of the bars matches the cluster where the category is over expressed.
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4.5 Distinct Hydrological Behavior of Catchment Clusters

In this study, we have so far analyzed the characteristics of river catchments at regional to CONUS scales by solely using

their physical traits. For this investigation to be useful from a hydrological perspective, it is desirable to analyze possible

connections between the catchment clusters and their hydrological behavior. In Sect. 3.5, we show that the distributions of560

hydrological indices calculated using stream flows are statistically different when aggregated by catchment cluster, indicating

that the partitioning with the traits generates clusters that have distinct hydrological behavior.

We can leverage the interpretability provided by the trait categories to hypothesize predominant factors that influence hy-

drological behavior in the catchment clusters. For example, the distributions of two indices from (Olden and Poff, 2003), mean

annual runoff (MA41) and the average yearly number of moderate floods events in a watershed (FH6) are shown in Fig. 13. In565

FH6, a flood is considered moderate when the stream flow exceeds 3 times the value of the median flow.

Cluster 7 (gray box in Fig. 13) displays the highest median and the highest upper whisker for MA41, which is the 75th per-

centile plus 1.5 times the interquartile range. The catchments in this cluster are predominantly located in the Pacific Northwest

(Fig. 4). From the analysis of the over expressed trait categories, we find that this cluster is characterized by high precipitation

(see plots relative to cluster 7 in file SI_2 of the dataset (Ciulla and Varadharajan, 2023)). Therefore we see that catchments570

in the Pacific Northwest with higher precipitation also have greater average flows. Cluster 1 (orange box in Fig. 13b) displays

the highest median and the highest upper whisker for FH6, and contains catchments in proximity to developed areas (Fig.

7b). Hence we can hypothesize that predominantly developed catchments are more vulnerable to moderate flooding, which

is consistent with a previous finding from (Ombadi and Varadharajan, 2022) showing that catchments with a higher percent-

age of impervious cover in the GAGES-II dataset generally have increased runoff ratios in both temperate and arid climates.575

These two examples highlight the use of our methodology to demonstrate how specific hydrological behaviors can connected

to catchment traits such as their climatic conditions or anthropogenic influence. The boxplots of the full set of hydrological

indices included in this study can be found in the file SI_3 in the data repository (Ciulla and Varadharajan, 2023).

Such a result is quite remarkable in that our unsupervised classification method only uses physical traits as inputs to generate

clusters of catchments. Even though no hydrological time series are used in the classification workflow, the resulting catchment580

clusters display distinct hydrological behavior. The ability to link catchment characteristic traits to specific hydrological behav-

iors, enables further analysis of the factors that influence different stream flow characteristics (e.g. high versus low flows). In

particular, the distinction between anthropogenically-influenced trait categories and natural traits (see Table 1) enables further

analysis of human activities on hydrologic behavior.

5 Conclusions585

In this study, we demonstrate a new network-based method for unsupervised classification of river catchments using their

environmental and anthropogenic traits. This approach builds two parallel networks - the first identifies similar catchments,

and the second reduces the large set of redundant traits into a small, interpretable set of trait categories. The method enables

simultaneous analysis of the catchment clusters and co-expression of the trait categories, making it possible to identify the
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Figure 13. Boxplot of the hydrologic indices (a) MA41 and (b) FH6 representing the mean annual runoff and the yearly average number of

moderate floods events per catchment respectively. The x-axis shows the catchment clusters of size greater than 50 sorted in descending size

order. The values in the y axis are indices aggregated by catchment clusters. The colors of the bars match the colors of the clusters in Fig. 4.

predominant traits that result in the partitioning of catchments into different groups. This trait-based approach can be used590

beyond hydrological applications to classify high dimensional datasets that have correlated information.
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Using this method, we classified 9,067 catchments in the continental United States based on 274 traits from the GAGES-II

dataset. The resulting clusters tend to be geographically coherent, even though no coordinates were used as inputs, revealing

spatial patterns for catchments with predominantly natural or anthropogenic traits. The method can be implemented at multi-

ple spatial scales for which trait data are available. As expected, the catchment clusters and associated trait expressions vary595

according to the spatial scale used for the analysis. We also find that the catchment clusters display distinct streamflow char-

acteristics, as quantified by hydrological indices, indicating the potential for using the trait-based classification to understand

and predict hydrological behavior.

We can also leverage network-specific metrics, like the degree centrality using this workflow. We demonstrate their utility by

identifying a small set of watersheds that are representative for a group of catchments with specific traits. These representative600

sites can be used to determine locations to conduct observations or modeling activities that are transferable to other catchments.

Catchments are complex systems and their hydrological behavior is determined by the combined effect of multiple, co-

dependent traits. Thus, networks are an extremely useful tool for investigating catchment properties and behavior, since they

enable a holistic approach to the study of the system. The collective analysis of traits creates the opportunity to average out the

unique characteristics of individual catchments, and characterize emergent hydrological behaviors across spatial scales.605

Code and data availability. The daily observations of streamflow and specific conductance used in this study are publicly available from

USGS NWIS at https://waterdata.usgs.gov/nwis. The characteristics of catchments from GAGES-II dataset are publicly available and can be

accessed at https://pubs.er.usgs.gov/publication/70046617. The data used are publicly available with a CCBy4 license on the U.S. Department

of Energy ESS-DIVE data repository and are accessible with the doi:10.15485/1987555 (Ciulla and Varadharajan, 2023). The code used will

be released open source with a modified BSD 3-clause license as a Github repository, if this paper is accepted. The files for the codes are610

attached for review purposes with the manuscript submission.

Appendix A: Data preprocessing

The traits in GAGES-II with prefix "RAW_" describe the straight line distance (in km) of water stations from points of interest

such as dams, canals, etc. If no such point of interest is present in the basin, the trait is assigned a missing value of -999. This

choice of missing values makes the trait non-monotonic because they have small positive values for stations in close proximity615

to a point of interest, large values for stations far from it, and a large negative value when the point is not present in the

catchment. We transform these traits by computing the inverse of the variable for values greater than 0 (Fig. A1). The arbitrary

-999 values are mapped into zeros. When gaging stations geographically coincide with the point of interest, the original zero

distances are replaced with the maximum of the newly transformed values. In this way, the newly transformed trait values are

monotonic and are a continuous and differentiable function of the distance.620
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Figure A1. A pictorial representation of the trait mapping performed on a) the original variable denoting distance from a point of interest,

and b) the resulting mapped values.

Appendix B: Cao’s method

The only free parameter of the PCA method is the number k, which is the final dimension of the reduced space. We determine

k using the false nearest neighbors method (FNN) from (Krakovská et al., 2015), which is based on the assumption that two

points that are near each other in a sufficiently low dimensional space should remain close as the dimensions increase. In

particular, we use the Cao’s version of FNN (Cao, 1997), where the average distances E(k + 1) of the closest neighbor of625

all the elements in the space of dimension k + 1 are divided by the same quantity computed in the k-dimensional space. For

sufficiently high values of k, the ratio R(k) = E(k + 1)/E(k) approaches the value of 1, indicating that the average distances

are not changing in two consecutive dimensions. We chose an arbitrary value of 1.05 to define the threshold below which the

value R(k) is assumed to be constant. The value k̂ for which R(k̂) < 1.05 determines the number of principal components

to retain in the PCA method. For our dataset, the value of k̂ is 20. By choosing k̂ = 20 dimensions in the reduced space, we630

account for 71.6% of the total variance of the original data.

Appendix C: Cosine similarity

We present a comparison of the cosine similarity, our choice for the similarity measure, against the widely used euclidean

distance and highlight why the latter is not the best choice to capture relationships within high-dimensional vectors.

The first reason is that vectors associated with two random points in an n-dimensional space have a high probability of being635

almost orthogonal when the number of dimensions n diverges (Aggarwal et al., 2001). Thus:

xxx ·yyy −−−−→
n→∞

0 xxx,yyy ∈ Rn (C1)
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Figure B1. Ratio R(k) as a function of the number of dimensions of the PCA. The horizontal dashed line in red indicates the arbitrary value

R = 1.05.

The euclidean distance DE between two vectors xxx and yyy is:

DE(xxx,yyy) =

√√√√
n∑

i

(xi− yi)2 =
√
∥xxx∥2 + ∥yyy∥2− 2xxx ·yyy (C2)

where ∥ · ∥ represents the euclidean norm.640

In the case of high-dimensional vectors, applying Equation C1 on Equation C2 causes the Euclidean distance to become a

function of solely the vector norms:

DE(xxx,yyy)−−−−→
n→∞

√
∥xxx∥2 + ∥yyy∥2 (C3)

This is not desirable because we lose the information about the relationship between the vectors, which is of interest when

computing a distance metric. Although there is no definitive size threshold above which the effect of the high dimensional-645

ity will be prevalent, we expect that the effect would not be negligible even in the 20-dimensional space obtained after our

dimensionality reduction step through the PCA.

Another consideration when choosing a distance measure is the type of information it provides. In the case of the Euclidean

distance, the directionality of the vectors associated with the data point does not influence the metric. Figure C1 illustrates

an example in 2 dimensions where the directionality of the data is not captured by the euclidean distance. In particular, the650

points A and B have swapped coordinates (xA = yB and yA = xB) with xA = yB << yA = xB . Instead C has the same B y

coordinate (yB = yC) and x so that the euclidean distance between A and B dE(A,B), and B and C dE(B,C) are the same. So
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the Euclidean distance would indicate as equal the relationship between two points with swapped coordinates, which should

depict two very different elements, and between one of the two and a third one that shares exactly one coordinate, while the

second coordinate is simply greater.655

Conversely, the cosine distance captures the difference between A-B and B-C, because it considers the directionality. Specif-

ically, the angle αAB between A and B is much greater than the one αBC between B and C leading to a bigger cosine distance.

The cosine similarity captures the information contained in the different coordinates of the data points. In our methodology,

the coordinates are the components given by the principal components as computed by the PCA, which represent a mixture

of traits. We contend that in a trait based approach the directionality is important both before and after the dimensionality660

reduction and needs to be captured.

Figure C1. A pictorial representation of the qualitative difference between euclidean distance and cosine similarity. The point B is equidistant

to A and C as per the euclidean distance metric even though its coordinate values are swapped with respect to A.

Hence, to mitigate the effects of dimensionality and include information on directionality, we use the cosine similarity instead

of the Euclidean distance to compute the relationship between vectors. Computationally, the cosine similarity is computed as

the dot product of a matrix with normalized row vectors and its transpose. In Equation 1, the dot product between the two

vectors is the numerator of a ratio with the vector norms. Since it is a multiplicative factor, the dot product is retained regardless665

of how small its value is. For the Euclidean metric, a negligible value of the dot product will be outweighed by the norms of

the vectors.
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Finally, it is worth noting that the Euclidean distance and the cosine similarity are related to each other, and are equivalent

when applied to normalized vectors. Specifically, when the vectors are normalized, then Equation C2 becomes

DE =
√

2(1−SC) =
√

2DC (C4)670

where DC = 1−SC is defined as the cosine distance.

Appendix D: Brief Introduction to Networks

A network G is a mathematical object constituted by two sets {N,E} where N is the set containing the nodes of the network

and E is the set of pairs of nodes called edges: E = {e = (a,b)s.t.a,b ∈N}. A network is a great tool to model relationships

and interactions among the elements of a system (Börner et al., 2007). The elements of the system are represented as nodes675

while the relationships are described by the edges. If the relationship between a pair of nodes is commutative, then the network

is called undirected, meaning that there is no directionality in the edge: (a,b) = (b,a). Edges with the same node as endpoints

are self-loops, and may or may not be present according to what the edges represent. An edge can be simply present or not (for

which unweighted networks are appropriate), or it can carry a weight representing the strength of the edge whose interpretation

depends on the system under analysis. The maximum number of edges present in an undirected network with no self-loops, is680

the number of possible combinations of pairs of elements in N without considering the order
(|N |

2

)
= |N |(|N |−1)/2. Here, |N |

is the number of nodes and also represents the size of the network. A network that has all possible edges is called complete,

and its edge number is O(|N |2). This rarely occurs for real world phenomena, and hence typically the number of edges in

real-world networks is much smaller than O(|N |2) (Newman, 2005). This is a crucial point, because it is the arrangement of

edges and their eventual heterogeneous distribution, namely the network topology, that gives rise to connectivity patterns that685

reveal insights about the system. We refer to networks as being complex when they display non-trivial topological features,

with patterns of connection between their elements that are neither regular and yet not purely random. All this information is

condensed in an adjacency matrix, where both rows and columns are nodes, and each element of the matrix is the weight of

the edge between the two nodes identifying the matrix element and zero otherwise. If the network is undirected such a matrix

is symmetric. For a complete review of network properties refer to (Newman, 2018).690

Appendix E: Clustering Coefficient

The clustering coefficient is a network measure that quantifies the connections among the neighbors of a certain node (Wasser-

man and Faust, 1994; Scott, 1992).This measure ranges from zero (corresponding to the situation where no neighbors of a node

are connected to each other) to one (where all the neighbors of a node are connected to each other). We compute the clustering

coefficient for all the nodes in both the catchments and traits networks and show the results as a probability density function in695

E1. In both cases, the clustering coefficient spans the entire possible range of 0 to 1. In the network of catchments the average

clustering coefficient, computed by averaging the clustering coefficient of all nodes, is 0.61, while in the network of traits it

is equal to 0.75. This means that in both cases, on average, more than half of the possible connections among neighbors are
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Figure E1. Probability distribution function of clustering coefficients for the network of catchments, in blue, and the network of traits, in

orange.

present. This fact indicates the presence of a group of nodes well connected with each other, and is the first indication of the

presence of complex connectivity patterns that can lead to the formation of clusters in both networks.700

In the traits network the value with the highest probability is one, meaning that there are parts of the network that form

complete cliques, namely subsets of nodes that have all the possible edges allowed among them. This fact confirms the intuition

that some of the attributes provide redundant information, because their similarity, in terms of co-expression as learned by the

PCA, generates such tightly connected areas.

Appendix F: Traits Network Clusters Composition705

Cluster ID: 1 ; Cluster Name: Developed Areas ; Cluster Size: 35 ; Anthropogenic: yes
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PDEN_2000_BLOCK, PDEN_NIGHT_LANDSCAN_2007, IMPNLCD06,

PDEN_DAY_LANDSCAN_2007, DEVNLCD06, MAINS800_DEV, RIP100_DEV, RIP100_22,

RIP800_DEV, DEVLOWNLCD06, MAINS800_22, RIP800_22, ROADS_KM_SQ_KM, MAINS100_22,

MAINS100_DEV, RD_STR_INTERS, MAINS100_21, MAINS800_21, RIP100_21, DEVOPENNLCD06,

RIP800_21, DEVMEDNLCD06, FRESHW_WITHDRAWAL, NLCD01_06_DEV, DEVHINLCD06,

MAINS100_23, MAINS100_24, MAINS800_23, MAINS800_24, RIP100_23, RIP100_24, RIP800_23,

RIP800_24, HGAC, DDENS_2009

Cluster ID: 2 ; Cluster Name: Precipitation and Runoff ; Cluster Size: 30 ; Anthropogenic: no

RUNAVE7100, WB5100_ANN_MM, NOV_PPT7100_CM, PPTAVG_BASIN, OCT_PPT7100_CM,

WB5100_NOV_MM, DEC_PPT7100_CM, WD_SITE, WDMAX_BASIN, WB5100_MAY_MM,

PPTAVG_SITE, WB5100_APR_MM, WB5100_JUN_MM, WD_BASIN, WDMAX_SITE,

APR_PPT7100_CM, WB5100_OCT_MM, WB5100_DEC_MM, JAN_PPT7100_CM,

FEB_PPT7100_CM, MAR_PPT7100_CM, WB5100_JAN_MM, WB5100_FEB_MM,

WB5100_MAR_MM, WB5100_SEP_MM, WB5100_JUL_MM, WB5100_AUG_MM, RH_BASIN,

RH_SITE, PRECIP_SEAS_IND

Cluster ID: 3 ; Cluster Name: Temperature ; Cluster Size: 22 ; Anthropogenic: no

T_AVG_BASIN, T_AVG_SITE, T_MAX_BASIN, T_MAX_SITE, T_MIN_BASIN, T_MIN_SITE, PET,

FEB_TMP7100_DEGC, MAR_TMP7100_DEGC, APR_TMP7100_DEGC, MAY_TMP7100_DEGC,

SEP_TMP7100_DEGC, OCT_TMP7100_DEGC, NOV_TMP7100_DEGC, DEC_TMP7100_DEGC,

FST32F_BASIN, AUG_TMP7100_DEGC, RFACT, JAN_TMP7100_DEGC, JUN_TMP7100_DEGC,

JUL_TMP7100_DEGC, FST32SITE

Cluster ID: 4 ; Cluster Name: Croplands ; Cluster Size: 22 ; Anthropogenic: yes

MAINS800_PLANT, PLANTNLCD06, MAINS100_PLANT, RIP100_PLANT, RIP800_PLANT,

NITR_APP_KG_SQKM, PHOS_APP_KG_SQKM, MAINS100_82, CROPSNLCD06,

MAINS800_82, RIP100_82, RIP800_82, CDL_CORN, CDL_SOYBEANS, FRAGUN_BASIN, PAS-

TURENLCD06, MAINS100_81, MAINS800_81, RIP100_81, RIP800_81, CDL_OTHER_HAYS,

HIRES_LENTIC_DENS

Cluster ID: 5 ; Cluster Name: Croplands and Canals ; Cluster Size: 16 ; Anthropogenic: yes

RAW_DIS_NEAREST_CANAL, CANALS_PCT, CANALS_MAINSTEM_PCT, PCT_IRRIG_AG,

CDL_RICE, PCT_NO_ORDER, NPDES_MAJ_DENS, PESTAPP_KG_SQKM, CDL_ORANGES,

HYDRO_DISTURB_INDX, STREAMS_KM_SQ_KM, HGBD, RAW_DIS_NEAREST_MAJ_NPDES,

ASPECT_NORTHNESS, RAW_AVG_DIS_ALLCANALS, RAW_AVG_DIS_ALL_MAJ_NPDES

Cluster ID: 6 ; Cluster Name: Croplands and Dams ; Cluster Size: 15 ; Anthropogenic: yes
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CDL_OTHER_CROPS, RAW_DIS_NEAREST_DAM, RAW_AVG_DIS_ALLDAMS, CDL_BARLEY,

CDL_DURUM_WHEAT, CDL_DRY_BEANS, CDL_POTATOES, RAW_DIS_NEAREST_MAJ_DAM,

RAW_AVG_DIS_ALL_MAJ_DAMS, MAJ_DDENS_2009, CDL_SPRING_WHEAT, CDL_OATS,

HGBC, CDL_SUNFLOWERS, CDL_ALFALFA

Cluster ID: 7 ; Cluster Name: Barren Soil and Deciduous Forests ; Cluster Size: 12 ; Anthropogenic: no

MINING92_PCT, PADCAT1_PCT_BASIN, BARRENNLCD06, DECIDNLCD06, MAINS100_31,

MAINS800_31, RIP100_31, RIP800_31, RIP800_41, MAINS100_41, MAINS800_41, RIP100_41

Cluster ID: 8 ; Cluster Name: Elevation ; Cluster Size: 12 ; Anthropogenic: no

ELEV_MAX_M_BASIN, ELEV_MEDIAN_M_BASIN, SNOW_PCT_PRECIP,

ELEV_MEAN_M_BASIN, T_MINSTD_BASIN, LST32F_BASIN, ELEV_MIN_M_BASIN,

ELEV_SITE_M, T_MAXSTD_BASIN, ELEV_STD_M_BASIN, LST32SITE, SLOPE_PCT

Cluster ID: 9 ; Cluster Name: Evergreen Forests ; Cluster Size: 12 ; Anthropogenic: no

PADCAT3_PCT_BASIN, MAINS100_42, MAINS100_FOREST, MAINS800_42, RIP100_FOREST,

RIP100_42, MAINS800_FOREST, FORESTNLCD06, EVERGRNLCD06, RIP800_42, PAD-

CAT2_PCT_BASIN, RIP800_FOREST

Cluster ID: 10 ; Cluster Name: Woody Wetlands and Croplands ; Cluster Size: 11 ; Anthropogenic: yes

MAINS100_90, TOPWET, RIP800_90, CDL_PEANUTS, ROCKDEPAVE, MAINS800_90, RIP100_90,

WOODYWETNLCD06, PERDUN, CDL_WWHT_SOY_DBL_CROP, CDL_COTTON

Cluster ID: 11 ; Cluster Name: Lakes, Ponds and Reservoirs ; Cluster Size: 10 ; Anthropogenic: yes

ARTIFPATH_PCT, MAINS800_11, RIP100_11, STOR_NID_2009, STOR_NOR_2009,

HIRES_LENTIC_PCT, HIRES_LENTIC_MEANSIZ, WATERNLCD06, RIP800_11, MAINS100_11

Cluster ID: 12 ; Cluster Name: Pastures and Grasslands ; Cluster Size: 10 ; Anthropogenic: yes

CDL_FALLOW_IDLE, GRASSNLCD06, MAINS100_71, MAINS800_71, RIP100_71, RIP800_71,

CDL_SORGHUM, CDL_WINTER_WHEAT, CDL_PASTURE_GRASS, ASPECT_EASTNESS

Cluster ID: 13 ; Cluster Name: Fine Soils ; Cluster Size: 10 ; Anthropogenic: no

AWCAVE, CONTACT, NO200AVE, SILTAVE, NO10AVE, KFACT_UP, NO4AVE, CLAYAVE, HGC,

HGD

Cluster ID: 14 ; Cluster Name: Major Dams ; Cluster Size: 9 ; Anthropogenic: yes

ARTIFPATH_MAINSTEM_PCT, PCT_6TH_ORDER_OR_MORE, DRAIN_SQKM, NDAMS_2009,

POWER_NUM_PTS, MAJ_NDAMS_2009, POWER_SUM_MW, HIRES_LENTIC_NUM,

STRAHLER_MAX

Cluster ID: 15 ; Cluster Name: Summer Precipitation ; Cluster Size: 7 ; Anthropogenic: no
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SEP_PPT7100_CM, WDMIN_BASIN, WDMIN_SITE, MAY_PPT7100_CM, JUN_PPT7100_CM,

JUL_PPT7100_CM, AUG_PPT7100_CM

Cluster ID: 16 ; Cluster Name: Herbaceous Wetlands ; Cluster Size: 7 ; Anthropogenic: no

HGAD, OMAVE, MAINS100_95, RIP100_95, RIP800_95, EMERGWETNLCD06, MAINS800_95

Cluster ID: 17 ; Cluster Name: Mixed Forests ; Cluster Size: 6 ; Anthropogenic: no

HGCD, MIXEDFORNLCD06, MAINS100_43, MAINS800_43, RIP100_43, RIP800_43

Cluster ID: 18 ; Cluster Name: Coarse Soils ; Cluster Size: 6 ; Anthropogenic: no

BFI_AVE, HGA, PERMAVE, HGB, SANDAVE, WTDEPAVE

Cluster ID: 19 ; Cluster Name: Perennial Ice and Snow ; Cluster Size: 5 ; Anthropogenic: no

SNOWICENLCD06, MAINS100_12, MAINS800_12, RIP100_12, RIP800_12

Cluster ID: 20 ; Cluster Name: Shrublands ; Cluster Size: 5 ; Anthropogenic: yes

SHRUBNLCD06, MAINS100_52, MAINS800_52, RIP100_52, RIP800_52

Cluster ID: 21 ; Cluster Name: Lower Order Streams ; Cluster Size: 5 ; Anthropogenic: no

PCT_1ST_ORDER, RRMEDIAN, BAS_COMPACTNESS, PCT_2ND_ORDER, RRMEAN

Cluster ID: 22 ; Cluster Name: Higher Order Streams ; Cluster Size: 4 ; Anthropogenic: no

PCT_3RD_ORDER, MAINSTEM_SINUOUSITY, PCT_5TH_ORDER, PCT_4TH_ORDER

Cluster ID: 23 ; Cluster Name: Non Croplands ; Cluster Size: 1 ; Anthropogenic: yes

CDL_ALL_OTHER_LAND

Cluster ID: 24 ; Cluster Name: Overland Flow ; Cluster Size: 1 ; Anthropogenic: no

PERHOR

Cluster ID: 25 ; Cluster Name: Bulk Density ; Cluster Size: 1 ; Anthropogenic: no

BDAVE

Table F1: List of traits aggregated by the traits network clusters. For each cluster we provide an header including a unique ID,

a representative name, the size of the cluster in terms of nodes, indicate if the cluster includes anthropogenic factors, and the

list of traits in the cluster.
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